
LogSense: Scalable Real-Time Log Anomaly
Detection Architecture

Abhay Srivatsa, Venkatasai Gudisa

Abstract

Most scalable systems lack an equally scalable anomaly detection architecture for their logs, which is crucial to maintaining
integrity. This paper introduces LogSense, an all-in-one solution that leverages state-of-the-art LLM-based Machine
Learning models and advanced stream processesing frameworks to swiftly identify and address anomalies within complex
log data streams. By focusing on an easy-to-use plug-and-play configuration, LogSense differentiates itself by inviting and
effectively treating distributed systems. Orchestrated by efficient messaging and backed by user-driven refinement, LogSense
offers a robust architecture capable of delivering rapid and accurate insights into system anomalies.

I. Background

What are Logs?

The key to understanding any computer system is
through its logs: chronological records of system
events. While an overwhelming majority of these logs
are generated by system startups, resource accesses,
and other mundane events, deviations from the stan-
dard flow result in anomalies. The term “normal”
refers to logs associated with mundane, expected
events while “anomalies” are unwanted logs that in-
dicate unexpected system events. Analogous to a
human body, normal logs represent expected health
indicators, while anomalies serve as symptomatic
signals that may lead to adverse consequences. Con-
sequently, as doctors, programmers must accurately
diagnose and promptly treat the anomalies through
the use of Log Anomaly Detection – a pivotal process
in system management.

Log Anomaly Detection

In an ideal world, programmers can simply monitor
logs manually, identify any anomalies as they occur,
and treat them efficiently. It would be like standing
on the shore of a beach and picking up seashells from
a soft wave as it brushes your feet. Unfortunately, the
reality is much more grim. The wave of logs current
systems usually generate resembles less of a ripple
and more of a tsunami, necessitating automated de-
tection methods.

Before we delve into algorithms we can utilize, it’s
important to keep in mind that while log anomalies
are analogous to symptoms of illness, we can’t simply
define a set of rules to conclude. Given the unpre-
dictable nature of anomalies, traditional rule-based
approaches fall short. For example, let’s say you im-
plement a rule-based system that scans network logs

for occurrences such as continued failed logins from
an IP or login attempts from known malicious IPs.
While this schema can detect well-known attacks that
match the predefined signatures, it would be unable
to detect any novel or sophisticated threats. Attack-
ers could very easily tailor an attack to your system’s
infrastructure, bypassing the IP rules or any other
rules you’ve defined previously. This necessitates
the adoption of continually improving algorithmic
strategies capable of establishing norms within the
logs and discerning any deviations therein.

Traditional Approaches

Algorithmic approaches to Log Anomaly Detection
can be split into two subsets – supervised and unsu-
pervised. Supervised learning uses annotated data
to learn the patterns in both normal and abnormal
data and classify any new data as normal or anoma-
lous. In contrast, unsupervised models internalize
the structure of normal logs to define any heavy de-
viations as anomalous. While both schemas present
their own set of advantages and disadvantages, su-
pervised models are usually unrealistic due to their
dependence on annotated data. The incredible imbal-
ance between normal and anomalous log data along
with a general lack of labeled data limits the effec-
tiveness of Supervised Learning. On the other hand,
Unsupervised Learning is largely based on statistical
knowledge, causing it difficulties in capturing and
interpreting complex anomalies. Therefore, a mix of
both must be employed to find the few needles in the
enormous pin stack.

Historically, Principal Component Analysis (PCA),
Support Vector Machines (SVMs), and Invariant Min-
ing have been employed for log anomaly detection.
Principal Component Analysis (PCA) is a dimension-
ality reduction technique that is widely utilized in the
world of data. It identifies and projects data onto the

LogSense

directions (principal components) of maximum vari-
ance within, reducing its dimensionality and remov-
ing noise. In the case of log anomaly detection, popu-
lar PCA-based approaches reduce the dimensionality
of event-count vectors, identifying outliers as anoma-
lies [1]. Another approach that utilizes event counts
is a Support Vector Machine. SVMs work by examin-
ing normal and anomalous events and then defining
a boundary in a high-dimensional space that best sep-
arates them. Conventionally, SVMs are most effective
in supervised learning environments, but a variation
known as the One-Class SVM [1] has been shown to
work well by defining a boundary that encompasses
the most normal logs possible, defining any logs
outside that boundary as anomalous. The primary
drawback of these methods is the loss of semantics –
treating log lines as simple event counts disregards
any meaning encoded in them. Invariant Mining, on
the other hand, takes us a step closer in gaining a
deeper understanding of the logs. Invariant Mining
[1] discerns linear relations between log occurrences
and decides if a new log follows predefined work-
flows of execution. Gaining a deeper understanding
of the logs necessitates more sophisticated techniques
rooted in Deep Learning.

Deep Learning-based Approaches

Deep Learning leverages interconnected layers of
nodes that perform matrix multiplications to learn
increasingly abstract forms of representing data. Due
to its adaptability and effectiveness, it has found
widespread applications in various domains, includ-
ing Predictive Analysis, Image Recognition, and Nat-
ural Language Processing (NLP). NLP enables com-
puters to interpret human language contextually, en-
coding as much meaning as possible. Since the major-
ity of a log is composed of human language written
by programmers, NLP-based models can treat it as a
linguistic entity. This, in turn, helps NLP facilitate a
deeper understanding of system behaviors, enabling
more accurate anomaly detection and diagnosis.

II. Models

Preliminary

Before delving into NLP-based models, it’s imper-
ative to establish foundational knowledge. All of
the following models typically undergo a process in-
volving preprocessing of log lines, embedding using
transformer-based architectures like BERT or GPT,
and subsequent inferencing using these embeddings.
State-of-the-art NLP, models such as BERT and GPT,
employ transformers to encode text comprehensively,

leveraging vast pre-training on immense corpora to
capture the essence of log lines. Ultimately, anomaly
detection techniques examined in this study deter-
mine the regularity of log entries by extracting their
meaning from learned embeddings.

LAnoBERT

LAnoBERT [2] is a relatively recent approach rooted
in the idea that anomalous logs often exhibit dis-
cernible contextual clues. If we can understand what
normal contexts look like, we can flip this knowledge
to define logs as abnormal based on their context. To
this end, the model is trained on normal logs using
Masked Language Model (MLM) techniques, where
tokens representing log lines undergo masking, fos-
tering context learning. Initially, preprocessing steps
filter out extraneous information such as numerical
values and IP addresses due to their irrelevance to
the task at hand. Next, a predefined percentage of
logs are masked at random, forcing a wide compre-
hension of the corpora. Similarly, during testing,
every token in a sequence undergoes masking one at
a time – tokens assigned with anomalously low prob-
abilities are deemed as such due to their deviation
from learned contexts. In essence, if a log is given
a low probability of occurrence with its context, it’s
most probably anomalous.

LogGPT

LogGPT [3], akin to LAnoBERT, employs transformer-
based embeddings, albeit using GPT-2. Noteworthy
distinctions lie in LogGPT’s preprocessing, which
entails log parsing to derive log templates that can be
mapped to event ids within the sequence being con-
sidered. Next-token prediction during pre-training
replaces MLMs since LogGPT argues that an MLM
would reduce the model’s ability to comprehend and
exploit the natural flow of normal logs. This pre-
training is coupled with a Reinforcement Learning
fine-tuning system that sharpens model understand-
ing. The model is led to predict top-k (k being a
configurable integer) logs for the next log in the se-
quence given all of the previous logs. If this predic-
tion contains the actual log line, it’s rewarded with a
+1, otherwise, it’s punished with a -1. Likewise, our
analysis during testing relies on token predictions
within a top-k framework to identify anomalies – if
the log isn’t in the model’s prediction of the top-k,
it’s an anomaly. The logic behind this decision is
pretty simple – the model first learned sequential
information during the pre-training stage and then
got sharper during the fine-tuning stage. So if the
model can’t predict a token in its top-k after all the
rigorous learning it went through, there’s a very high

2

LogSense

Figure 1: Pre-training and Fine tuning process of GPT-2 used in LogGPT. Pre-training aims to deepen understanding in the area
while Finetuning sharpens its ability on downstream tasks (such as anomaly detection in our case) [3].

chance of it being anomalous.

RAPID

Our implementation of RAPID [4] diverges markedly
by focusing on individual log entries devoid of se-
quential context. After employing regex cleaning and
tokenization, RAPID utilizes BERT embeddings to
perform inference. It first compares each log’s [CLS]
token, a token at the beginning of a sentence’s encod-
ing that captures the meaning of the sentence as a
whole, to a database of normal logs to obtain a core
set of its closest neighbors. In this case, tokens refer
to the individual parts of one log line rather than
entire log lines like in LogGPT. If the max similarity
score from the current log to any of its closest neigh-
bors is past a certain threshold, it’s an anomaly. By
eschewing sequential context considerations, RAPID
optimizes for speed without sacrificing significant
accuracy.

maxSim(q, d) = ∑
i∈[|Eq |]

max
j∈[|Ed |]

Eqi • Eqj (1)

Differences

Treatment of semantics varies among models.
LAnoBERT and LogGPT prioritize contextual cues
at the expense of computational efficiency, while
RAPID emphasizes individual log analysis for
speedy anomaly detection. Balancing contextual
and token-level information is pivotal for accuracy,
with LogGPT emerging as a pragmatic choice to
accompany RAPID. Although LAnoBERT boasts
higher scores, it considers both past and future
logs as part of its inference. This highly contrasts

usability in the real world, since present log lines
should never be analyzed in the context of future
logs. Therefore, LogGPT’s efficient utilization of
past log contexts for prediction is preferred over
LAnoBERT. Additionally, the tradeoffs between
RAPID and LogGPT are also what unites them into
the perfect tandem.

III. LogSense

Getting Started

Configuration
To initiate their journey with LogSense, users engage
with the platform’s web application to configure a
service tailored to their specific needs. Beyond pro-
viding basic details like the service’s name and de-
scription, users can define various hyper-parameters
specific to RAPID and LogGPT, streamlining the pro-
cess for those versed in machine learning while of-
fering guidance for newcomers. The configuration
process integrates seamlessly with the Promtail setup
on each node, ensuring a plug-and-play experience
aimed at facilitating user adoption and fostering a
positive initial interaction.

When the service configuration is altered in
the future, Kafka is leveraged to propagate these
changes throughout the LogSense architecture. The
backend system dispatches a message to Kafka,
instigating an event that seamlessly incorporates the
updated configuration settings into subsequent Flink
preprocessing tasks. As we will discuss later on, this
integration underscores Kafka’s robust capabilities
within the context of Flink’s stream processing

3

LogSense

Figure 2: Visual 2D representation of how the core set is derived in RAPID. Neighbors obtained through the core set are then used to
calculate the maxsim score from above [4].

paradigm, facilitating instantaneous adaptation to
evolving user-defined configurations.

Train Mode
Deep-learning-driven log anomaly detection relies
on comprehending the structure of normal logs
to identify deviations indicating anomalies. This
requires supplying the models with labeled nor-
mal data at the outset, a prerequisite addressed
through LogSense’s innovative Train Mode. By
temporarily suspending inference, Train Mode
allows incoming logs to be treated as normal data
for model bootstrapping. This kick-starts model
training while providing ongoing opportunities for
model refinement, amplifying their effectiveness
over time. Feeding normal logs into these models is
the equivalent of providing greater support to the
foundation of a home – the greater the quantity the
more robust the models will be.

Online Architecture

Loki Aggregation
Upon configuration, logs flow into Loki, a robust
aggregation system optimized for storage and
indexing. Leveraging tagging capabilities and an
efficient Minio object storage database, Loki orga-
nizes logs for efficient querying and analysis, laying
the groundwork for subsequent querying. Tagging
refers to associating logs with data such as their
filename, node, service, and timestamp all of which
lead the way for metadata utilization later on. This
data is then ingested by Kafka, a high-throughput
messaging platform that orchestrates seamless data
movement across LogSense’s architecture, ensuring
scalability and fault-tolerance. The importance of
Kafka to LogSense can’t be overstated. It’s essentially
the backbone of the entire operation, alleviating the

stress from producers and consumers by providing a
streamlined approach for communication within the
architecture’s components.

Stream Processing
The core of LogSense’s stream processing infras-
tructure relies on Apache Flink, a robust stream
processing framework renowned for its capability
to handle high-throughput, low-latency, and con-
tinuous data streams while ensuring fault tolerance
and exactly-once processing paradigm. LogSense’s
intricate architecture necessitates the coordination of
2 flows of data within the Flink preprocessing.

RAPID’s Flink flow operates on a per-log basis,
prioritizing low latency at the expense of semantic
richness. This approach aligns with LogSense’s over-
arching design philosophy, leveraging LogGPT to
compensate for any loss in semantic context. The pre-
processing pipeline for RAPID within Flink follows
a meticulously orchestrated sequence:

1. Each log undergoes regex-based cleaning, em-
ploying user-defined service-based regex pat-
terns configured during service setup.

2. The cleaned log is subsequently tokenized utiliz-
ing the WordPiece Tokenizer and hashed using
a 64-bit hash function.

3. The resulting tokens, along with their corre-
sponding hash values and log tags, are dis-
patched to Kafka for transmission to the infer-
ence cluster, where they are utilized for generat-
ing embeddings and updating the QDrant vector
DB during the inference phase.

In contrast, the Flink preprocessing flow for Log-
GPT diverges significantly due to the model’s unique
requirements, particularly its reliance on fine-tuning
and pre-training mechanisms to enhance perfor-

4

LogSense

Figure 3: Seperate flows of Flink. RAPID is short and simple, aimed at quick preprocessing while LogGPT is patient to gather a
minute’s worth of logs before preprocessing.

5

LogSense

mance. The preprocessing workflow for LogGPT
is intricately tailored to accommodate these needs:

1. Upon data ingestion, logs are segregated based
on their associated service, facilitating granular
processing.

2. When Train Mode is enabled, a stateful mapping
operation is performed on each log key to de-
termine if the current sequence must be used
for pre-training or fine-tuning. Essentially, if a
stateful iterator increases past a certain thresh-
old, subsequent sequences are marked to be fine-
tuned. The threshold requirement is rooted in
the fact that extensive pre-training leads to over-
generalization of the model, leading to adverse
effects on its F1 score. As shown in Figure 5, nu-
merous datasets benefit from limiting the num-
ber of logs used during pre-training.

3. Logs earmarked for pre-training or fine-tuning
are stored in MongoDB for subsequent offline
training sessions, ensuring regular updates to
model parameters.

4. Logs earmarked for regular processing (train
mode turned off) undergo sequential processing
in chunks from 1-minute windows, involving
regex-based cleaning followed by hashing and
individual parsing using the Drain3 Log Parser.
Chunks within the 1-minute window are neces-
sary due to the limitations of GPT in considering
context size.

5. Parsed logs are mapped to their respective log
templates, yielding a sequence of log keys that
serve as inputs for subsequent inference tasks.

6. Hashed log lines and associated metadata are
routed to the inference cluster for real-time anal-
ysis and decision-making.

Real-time Inference
The beauty of Kubernetes and Docker is on full dis-
play in LogSense as they’re used to facilitate the hor-
izontal scaling of the inference process to accommo-
date the substantial volume of incoming logs. Docker
orchestrates the creation of container images contain-
ing the requisite code for each model, which are
subsequently pushed onto a designated container
registry. Kubernetes, in turn, interacts with the con-
tainer registry to retrieve these images and deploy
them dynamically, optimizing resource allocation to
efficiently handle the incoming data streams. Within
LogSense, Docker and Kubernetes collaborate to in-
stantiate new model instances capable of efficiently
processing large volumes of inputs.

The disparities between RAPID and LogGPT are
most pronounced in the context of inference. RAPID
benefits from the expedited arrival of pre-processed
logs, resulting in quicker inference decisions com-
pared to LogGPT. This deliberate architectural design

underscores RAPID’s emphasis on low latency, while
LogGPT prioritizes semantic comprehension.

RAPID leverages a Qdrant vector database to
store normal logs uniquely identified with the text’s
hashed representations, enabling efficient identifica-
tion of logs we’ve regarded as normal previously and
their subsequent judgment. For unidentified logs,
RAPID employs an efficient Approximate Nearest
Neighbors (ANN) algorithm to obtain the log’s core
set across the Qdrant database. This approach, sup-
ported by vector databases like Qdrant, enables quick
retrieval of nearest neighbors due to the efficient stor-
age of vectors. The user-configurable core-set size
provides flexibility in defining the anomaly tolerance
level. Following the core-set determination, RAPID
computes the max-similarity metric by aggregating
token similarities and finally applying a dynamically
adjusted threshold to classify logs as normal or ab-
normal. This threshold is continually refined based
on feedback, ensuring improved accuracy over time.
To initialize it, we must first compute the highest max
sim score from the normal database by masking each
log line from its own core set. This max similarity
is used as the first threshold, meaning any log line
that scores above it is displayed as an anomaly. If the
user sends feedback stating it was a false positive,
the log is marked as normal in the anomaly database
and the threshold is pushed to cover the max sim
of that log line. Essentially, the threshold is meant
to be at the maximum similarity of the least similar
log we’ve encountered thus far. As more and more
false positives are detected, the false positive rate is
continually improved.

In contrast, LogGPT adopts a top-k system to
evaluate log sequences, leveraging a pre-trained
and fine-tuned GPT-2 model to predict the top-k
tokens for the subsequent log entry. Anomalies
are identified when the actual token falls outside
the predicted set, reflecting a departure from the
anticipated sequence pattern. LogGPT’s anomaly
predictions are stored in MongoDB, facilitating user
feedback integration for anomaly refinement and
offline model enhancement.

HITL Updating
Human-in-the-loop (HITL) updating represents
a pivotal mechanism whereby users possess the
capability to rectify any false positives displayed
on the LogSense platform. Upon the cluster’s
determination of a log as anomalous using RAPID,
it is presented to the user via the website interface
for validation. Should the user confirm that the
log is indeed normal, the model service is invoked
to rectify the anomaly database accordingly and
append the log entry to the normal database. This

6

LogSense

Figure 4: Diagram of the complete architecture that composes LogSense

iterative process enables the model to assimilate
corrective feedback, enhancing its performance over
time by augmenting its knowledge base with accu-
rate representations of normal logs. Concurrently,
this approach facilitates continuous monitoring
and evaluation of the model’s efficacy through
the tracking of normalized log counts within the
anomaly database.

In the context of LogGPT, anomalies are presented
as temporal windows rather than individual log
entries, which inherently provide less granular
information. Both setups necessitate contextualiza-
tion to aid with Root Cause Analysis (RCA) and
debugging, prompting users to utilize Grafana for
further elaboration. When users opt for "More
Context" within the anomaly window, LogSense
queries Grafana using the tagging schema set up
in Loki, directing users to Grafana Explorer with
the query results, and furnishing them with more
information to aid their decision-making. This
feature is equally applicable to RAPID’s conclusions,
offering users comprehensive insights to facilitate
informed assessments of LogSense’s inference
judgments. In both cases, the beginning of the logs’
journey is poetically tied to its end as users can see
both sides when deciding the validity of LogSense’s
inference.

Offline Architecture
MongoDB serves as the repository for RAPID’s and

LogGPT’s distinct anomaly predictions, segregated
to facilitate efficient retrieval and management.
Additionally, MongoDB accommodates the storage
of logs generated during train-mode operations,
earmarked for subsequent LogGPT offline training
and fine-tuning conducted at the end of the day.
Notably, the correction of false positives triggers a
mechanism that promptly updates affected logs to
reflect their normal status within the database. This
corrective action serves as a potent instrument for
model refinement, enabling iterative improvement
through fine-tuning processes. By iteratively fine-
tuning LogGPT based on identified false positives,
the model is compelled to internalize the structural
nuances of normal log sequences, thus augmenting
its comprehension of typical log patterns and
iteratively enhancing its predictive capabilities.

Facilitating the monitoring and assessment of
model evolution, Tensorboard provides metrics to
evaluate the models’ performance – any abnor-
mal patterns within the evaluation scores will be
promptly dealt with. To ensure streamlined acces-
sibility and updateability, the model under train-
ing is versioned and securely stored within a Minio
database. Daily, the model undergoes iterative train-
ing cycles using fresh data extracted from MongoDB,
perpetually updating its version to reflect the latest
insights gleaned from the accumulated data corpus.

The efficacy of Kafka shines bright once again
as it orchestrates the update of the online model

7

LogSense

weights with seamless integration with the versioned
Minio database. Following each training iteration,
a notification is propagated through a separate
Kafka topic designated to model updates, thus
orchestrating the subsequent update of the online
model. This seamless synchronization mechanism,
powered by Kafka’s robust messaging capabilities,
ensures the timely dissemination and integration
of model updates across the LogSense architecture,
thereby continuing the cycle of model refinement
and improvement.

Applications in Distributed Systems
Distributed systems represent a collection of au-
tonomous computing nodes collaborating towards
shared objectives, often by allocating tasks across the
available nodes. This architectural paradigm fosters
scalability, fault tolerance, and parallel processing
capabilities by spreading computational workloads
across a networked infrastructure. The resultant
log data is significantly complex compared to
single-system logs due to factors such as concurrent
processes, heterogeneous environments, and intricate
error-handling mechanisms, necessitating an equally
complex analysis architecture. LogSense emerges
as a formidable solution against this backdrop,
tailored to navigate the intricacies of intertwined
logs inherent in distributed systems.

At the heart of LogSense lies its robust aggrega-
tion capabilities, enabling centralized monitoring
of logs produced by diverse nodes within the dis-
tributed system. By consolidating log data into a
unified platform, LogSense removes the need for
users to painstakingly assemble disparate log frag-
ments, offering instead a cohesive visual represen-
tation of system-wide log anomalies. Armed with
intuitive configuration tools, users can swiftly con-
figure LogSense to survey their service and nodes,
instantly gaining insights into anomalous activities
spanning the entire network upon accessing the plat-
form. In essence, LogSense offers a comprehensive
log monitoring solution, affording users a singular
vantage point for overseeing log activity across dis-
tributed infrastructures.

A future distinguishing hallmark of LogSense
lies in its sophisticated integration of trace analysis
methodologies, indispensable for detecting anoma-
lies within distributed systems. Trace IDs allow us
to map log lines to specific processes within the
distributed architecture, allowing us to view logs
contextually. For example, if a map-reduce job is
run across multiple nodes, Trace IDs are what allow
us to piece together the multi-node process. Using
this mapping, we can take log analysis to a whole
new level, getting useful insights into high level

processes rather than picking up granularities from
individual logs. Trace analysis would inform users
of any anomalous processes rather than anomalous
log lines, providing deeper, more productive
information about the systems. LogSense is en
route to implementing a Distributed Tracer that
not only notifies users about anomalous traces, but
actually lets them visualize them. Through the Trace
Visualizer, LogSense depicts the cross-node traces in
a digestible way for users to respond effectively.

Limitations
As promised above, let’s discuss the limitations of
Train Mode. Foremost among these limitations is
LogSense’s presumption that every log generated
during train mode adheres to normal behavior.
This assumption is inherently flawed, as anomalies
may inadvertently slip through the filtering process.
While this introduces cracks in the foundational
knowledge of the models, it is preferable to operate
with a flawed foundation than none at all. After
model initialization, user feedback on false positives
becomes instrumental in refining model performance,
thereby justifying this trade-off. Notably, LogSense
deliberately permits a higher percentage of false
positives to empower users with a direct mechanism
for model refinement. By prioritizing the correction
of false positives over false negatives, users are
empowered to rectify model inaccuracies, ensuring
a safer and more effective learning process. Unlike
false positives, which can be rectified, false negatives
remain undetected, underscoring the rationale
behind prioritizing the mitigation of false negatives
within the very structure of LogSense.

Another pertinent limitation of LogSense pertains
to its reliance on a predefined vocabulary size within
its LogGPT implementation. Fundamentally, Log-
GPT determines log sequence anomalies based on
the model’s inability to predict the subsequent log
line within its top-k predictions. Consequently, the
model necessitates a predetermined range of keys
for top-k selection. Presently, LogSense rigidly en-
forces a maximum vocabulary size hardcoded at 500;
should a 501st unique log template emerge from the
parsing process, unexpected behavior may emerge.
With this in mind, we’re exploring multiple avenues
of action such as extending the hardcoded vocab size
past any feasible system’s possibility. While retrain-
ing the model with an expanded key range appears
as an intuitive approach, it disregards the necessi-
ties of real-time stream processing. The dynamic
nature of log generation renders real-time model
updates unfeasible within LogSense’s architecture,
where thousands of logs are generated per second.
Consequently, a nuanced solution must be devised

8

LogSense

to surmount the constraints imposed by hardcoded
vocabulary size limitations.

IV. Further Study

While LogSense represents a significant stride in com-
prehending and managing system intricacies, there
are notable areas that demand further refinement.
One such area revolves around the generalization
of models. Given the diverse nature of the services
supported, LogSense requires distinct modeling ap-
proaches to cater to each service. This diversity may
potentially undermine overall effectiveness, imped-
ing its ability to generalize efficiently, thereby raising
concerns regarding false negatives. One possible so-
lution for this problem is to display every unique
normal log per service in LogSense. This would
empower users with the capability to flag anoma-
lies based on an aggregate view of unique normal
logs, with an obvious trade-off in increased human
involvement. Additionally, augmenting LogSense’s
capabilities in trace visualization holds promise for
future development, as it would enable users to gain
deeper insights by visualizing intricate interactions
and logs across system nodes. These areas under-
score the ongoing evolution of LogSense and signify
opportunities for continued enhancement and inno-
vation.

V. Conclusion

In conclusion, LogSense presents a cutting-edge ap-
proach to stream processing log anomaly detection,
harnessing the capabilities of state-of-the-art machine
learning models and continuous user feedback to
deliver rapid (ha!) and accurate insights. By inte-
grating advanced algorithms with user-driven refine-
ment, LogSense offers a robust architecture capa-
ble of swiftly identifying and addressing anomalies
within complex log data. Through its tandem of
cutting-edge models and efficient allocation of re-
sources, LogSense stands strong in the face of any
tsunami.

References

[1] Max Landauer et al. “Deep learning for anomaly
detection in log data: A survey”. In: Ma-
chine Learning with Applications 12 (June 2023),
p. 100470. issn: 2666-8270. doi: 10.1016/j.mlwa.
2023.100470. url: http://dx.doi.org/10.
1016/j.mlwa.2023.100470.

[2] Yukyung Lee, Jina Kim, and Pilsung Kang.
LAnoBERT: System Log Anomaly Detection based
on BERT Masked Language Model. 2023. arXiv:
2111.09564 [cs.LG].

[3] Xiao Han, Shuhan Yuan, and Mohamed Trabelsi.
LogGPT: Log Anomaly Detection via GPT. 2023.
arXiv: 2309.14482 [cs.LG].

[4] Gunho No et al. RAPID: Training-free Retrieval-
based Log Anomaly Detection with PLM considering
Token-level information. 2023. arXiv: 2311.05160
[cs.LG].

9

https://doi.org/10.1016/j.mlwa.2023.100470
https://doi.org/10.1016/j.mlwa.2023.100470
http://dx.doi.org/10.1016/j.mlwa.2023.100470
http://dx.doi.org/10.1016/j.mlwa.2023.100470
https://arxiv.org/abs/2111.09564
https://arxiv.org/abs/2309.14482
https://arxiv.org/abs/2311.05160
https://arxiv.org/abs/2311.05160

	I. Background
	What are Logs?
	Log Anomaly Detection
	Traditional Approaches
	Deep Learning-based Approaches

	II. Models
	Preliminary
	LAnoBERT
	LogGPT
	RAPID
	Differences

	III. LogSense
	Getting Started
	Online Architecture
	IV. Further Study
	V. Conclusion

